
PETSc and BOUT++

Jed Brown
Peter Brune, Emil Constantinescu,

Debojyoti Ghosh, Lois Curfman McInnes
{jedbrown,brune,emconsta,ghosh,curfman}@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

BOUT++ Workshop, 2013-09-04



Portable Extensible Toolkit for Scientific computing

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators

Nonlinear solvers, Time integrators

Spatial discretizations/topology∗

Example

Vendor supplies matrix format and associated preconditioner, distributes
compiled shared library. Application user loads plugin at runtime, no
source code in sight.



Portable Extensible Toolkit for Scientific computing
Algorithms, (parallel) debugging aids, low-overhead profiling

Composability

Try new algorithms by choosing from product space and composing
existing algorithms (multilevel, domain decomposition, splitting).

Experimentation

It is not possible to pick the solver a priori.
What will deliver best/competitive performance for a given physics,
discretization, architecture, and problem size?

PETSc’s response: expose an algebra of composition so new
solvers can be created at runtime.

Important to keep solvers decoupled from physics and
discretization because we also experiment with those.



Outline

Time Integration

Nonlinear solvers

Comments on performance



Trade-offs in time integration

Properties
Nonlinear stability (e.g., positivity preservation)
Stability along imaginary axis
L-stability (damping at infinity)
Implicitness and reuse

What is expensive?
Function evaluation
Operator assembly/preconditioner setup

How much can be reused for how long?

Implicit solves
Can we find better solver algorithm?
More effort in setup?

What is “convergence”?
Wave propagation: implicitness useless for convergence in a norm
Non-norm functionals could be robust



Reusing implicit solver setup

Linearization

MG interpolants

Lagged preconditioner

Modified Newton

Quasi-Newton

IMEX with linear implicit part

Rosenbrock/W



IMEX time integration in PETSc
Additive Runge-Kutta IMEX methods

G(t,x , ẋ) = F(t,x)

Jα = αGẋ +Gx

User provides:
FormRHSFunction(ts,t,x,F,void *ctx);
FormIFunction(ts,t,x,ẋ,G,void *ctx);
FormIJacobian(ts,t,x,ẋ,α,J,Jp,mstr,void *ctx);

Can have L-stable DIRK for stiff part G, SSP explicit part, etc.
Orders 2 through 5, embedded error estimates
Dense output, hot starts for Newton
More accurate methods if G is linear, also Rosenbrock-W
Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported
Extensible adaptive controllers, can change order within a family
Easy to register new methods: TSARKIMEXRegister()

Single step interface so user can have own time loop
Same interface for Extrapolation IMEX, LMS IMEX (in development)



Time integration method design

Select order, number of stages, required properties

Optimize properties like SSP coefficient, accuracy, or linear stability

TSARKIMEXRegister("my-method", ...coefficients...)

-ts_type arkimex -ts_arkimex_type my-method



Example: Additive Runge-Kutta design
3-stage, second order, L-stable implicit part

one-parameter family of solutions

ARK2c Maximize SSP coefficient

ARK2E Minimize leading error coefficient

−5 −4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3

Re(λ) ∆ t

Im
(λ

) 
∆

 t

 

 

ARK2c (IMEX)

ARK2c (EX)

ARK2E (IMEX)

ARK2E (EX)



Some TS methods

TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit SSP
Runge-Kutta ceff = 0.6 (Ketcheson 2008)

TSARKIMEX2E second order, one explicit and two implicit stages,
L-stable, optimal (Constantinescu)

TSARKIMEX3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)

TSROSWRA3PW three stage, third order, for index-1 PDAE, A-stable,
R(∞) = 0.73, second order strongly A-stable embedded
method (Rang and Angermann, 2005)

TSROSWRA34PW2 four stage, third order, L-stable, for index 1 PDAE,
second order strongly A-stable embedded method (Rang
and Angermann, 2005)

TSROSWLLSSP3P4S2C four stage, third order, L-stable implicit, SSP
explicit, L-stable embedded method (Constantinescu)



Adaptive controllers

“Stiff” waves are not stiff if one wants to converge in a norm

PETSc integrators provide embedded methods to estimate errors

Automatic controllers optimize local truncation error and nonlinear
solve cost

User can register custom controllers

Use a priori knowledge of the physics, robust functionals

Choose from list of methods, choose next step size



Outline

Time Integration

Nonlinear solvers

Comments on performance



Which nonlinear solver?
Global linearization (NewtonLS, NewtonTR)

Preconditioning libraries for assembled matrices
Low arithmetic intensity

Quasi-Newton
Build low-rank updates to Jacobian inverse
Brown and Brune, “Low-rank quasi-Newton updates for robust
Jacobian lagging in Newton-type methods”, ANS MC13.

Nonlinear multigrid and domain decomposition
ASPIN (left-preconditioned nonlinear Schwarz), also
right-preconditioned
Full Approximation Scheme with linear or nonlinear smoothers
More intrusive, but freakishly efficient for difficult problems

Nonlinear GMRES, Anderson mixing, nonlinear CG
Accelerator for nonlinear preconditioning
Good alternative to matrix-free finite differencing
More robust line search possible: operates in reduced basis





The Great Solver Schism: Monolithic or Split?

Monolithic

Direct solvers

Coupled Schwarz

Coupled Neumann-Neumann
(need unassembled matrices)

Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

Physics-split Schwarz
(based on relaxation)

Physics-split Schur
(based on factorization)

approximate commutators
SIMPLE, PCD, LSC
segregated smoothers
Augmented Lagrangian
“parabolization” for stiff
waves

X Need to understand global
coupling strengths

Preferred data structures depend on which method is used.
Interplay with geometric multigrid.



rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.



Outline

Time Integration

Nonlinear solvers

Comments on performance



Bottlenecks of (Jacobian-free) Newton-Krylov

Matrix assembly
integration/fluxes: FPU
insertion: memory/branching

Preconditioner setup
coarse level operators
overlapping subdomains
(incomplete) factorization

Preconditioner application
triangular solves/relaxation: memory
coarse levels: network latency

Matrix multiplication
Sparse storage: memory
Matrix-free: FPU

Globalization



Scalability Warning

The easiest way to make software scalable
is to make it sequentially inefficient.

(Gropp 1999)

We really want efficient software
Need a performance model

memory bandwidth and latency
algorithmically critical operations (e.g. dot products, scatters)
floating point unit

Scalability shows marginal benefit of adding more cores, nothing
more

Constants hidden in the choice of algorithm

Constants hidden in implementation



Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD
Choose approximation order at run-time, independent for each field
Precondition high order using assembled lowest order method
Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

E5-2670 8-core 35 166 4.7
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 43 205 4.8
Tesla M2090 120 665 5.5
Kepler K20Xm 160 1310 8.2
Xeon Phi 150 1248 8.3


	Time Integration
	Nonlinear solvers
	Comments on performance

